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This paper reports the results of direct numerical simulation of the motion of a two-
dimensional circular cylinder in Couette flow and in Poiseuille flow of an Oldroyd-B
fluid. Both neutrally buoyant and non-neutrally buoyant cylinders are considered. The
cylinder’s motion and the mechanisms which cause the cylinders to migrate are studied.
The stable equilibrium position of neutrally buoyant particles varies with inertia,
elasticity, shear thinning and the blockage ratio of the channel in both shear flows.
Shear thinning promotes the migration of the cylinder to the wall while inertia causes
the cylinder to migrate away from the wall. The cylinder moves closer to the wall in a
narrower channel. In a Poiseuille flow, the effect of elastic normal stresses is manifested
by an attraction toward the nearby wall if the blockage is strong. If the blockage is
weak, the normal stresses act through the curvature of the inflow velocity profile and
generate a lateral force that points to the centreline. In both cases, the migration of
particles is controlled by elastic normal stresses which in the limit of slow flow in two
dimensions are compressive and proportional to the square of the shear rate on the
body. A slightly buoyant cylinder in Couette flow migrates to an equilibrium position
nearer the centreline of the channel in a viscoelastic fluid than in a Newtonian fluid. On
the other hand, the same slightly buoyant cylinder in Poiseuille flow moves to a stable
position farther away from the centreline of the channel in a viscoelastic fluid than in
a Newtonian fluid. Marked effects of shear thinning are documented and discussed.

1. Introduction

We have developed a numerical scheme to simulate the motion of fluids and particles
in two dimensions. The fully nonlinear nature of the problem is preserved and treated
directly. This method was first applied to particle motion in Newtonian fluids (Hu,
Joseph & Crochet 1992; Feng, Hu & Joseph 19944, b; Huang, Feng & Joseph 1994).
Sedimentation in an Oldroyd-B fluid has been studied using the same scheme (Feng,
Huang & Joseph 1996). The present paper deals with the motion of particles in Couette
and Poiseuille flows of an Oldroyd-B fluid.

In a celebrated experiment, Segré & Silberberg (1961) discovered that neutrally
buoyant spherical particles in a pipe flow of a Newtonian fluid migrate to a radial
position roughly midway between the axis and the wall. The perturbation analysis of
Ho & Leal (1974) demonstrated that inertia causes a sphere to assume an off-centre
position in a planar Poiseuille flow. Karnis & Mason (1966) studied the migration of
a sphere in a viscoelastic liquid in a pipe flow when inertia is negligible. The sphere
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approaches the centre of the pipe regardless of its initial position. Ho & Leal (1976)
showed that normal stresses in a second-order fluid cause a sphere to migrate to the
centre of a planar Poiseuille flow. A few experiments on the motion of particles in
Couette flows have been reported (Gauthier, Goldsmith & Mason 1971; Bartram,
Goldsmith & Mason 1975). The purpose of these experiments was to study the
migration of spheres in the slightly non-uniform shear flow in the gap between two
concentric cylinders. No observation of particle motions in uniform shear flows of
viscoelastic fluids has been reported.

Direct numerical simulations are not restricted to small nonlinearity and the motion
of particles may be followed in real time. Feng et al. (1996) simulated the sedimentation
of particles in a vertical channel filled with an Oldroyd-B fluid and they showed that
particles are forced towards or away from walls depending on the particle—wall
separation and the width of the channel. The purpose of the present paper is to extend
the same line of study to shear flows. We will investigate the effects of normal stresses,
inertia and solid walls on the motion of a circular particle in a Couette or Poiseuille
flow bounded by two parallel walls.

The motion of the incompressible viscoelastic fluid is governed by the equations of
motion:

V-u=0,
u (1)
pf(&“‘ . Vu) =—-Vp+V.T,
where p; is the fluid density. The constitutive equation for an Oldroyd-B fluid is
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where D = (Vu+ Vu™)/2 is the strain-rate tensor; A, and A, are constant relaxation and
retardation times; % is the viscosity. The triangle denotes the upper-convected time-
derivative

or

ot

J

v
T:

Yu-VT—(Vu)" - T—T- (Vu), 3)

where (Vu);; = du;/0x;. Shear thinning can be easily added to the Oldroyd-B model by
using the Carreau—Bird viscosity law:

AT = (14 (9 4)
No— N
where v is the strain rate defined in terms of the second invariant in the usual way and
0 < n < 1. In our computation, we fixed the fluid relaxation time ratio A,/A; = 1/8 and
viscosity ratio /5, = 0.1.
Joseph & Feng (1996) did an analysis of the forces that move particles in slow plane
flows of a second-order fluid:

T=—pl+9A,+a,A,+a,A], Q)
where A, and A, are the first and second Rivlin—Ericksen tensors. Using the
Giesekus—Tanner theorem they showed that

a,Dpy .
V4 =PN+71 D;\ + (o +30,) 7%, (6)

where p, is the pressure of the Stokes flow for the prescribed values of velocity at the
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boundary of the flow domain. At the boundary of a solid body with outward normal
n, the normal component 7,,, of T is given by

];m +p= (Zal + 0‘2) 72 (7)
o Dpx’ (»
and T;Ln = _pN_T; Dt\ +%‘x1 72' (8)

This shows that the normal component of the nonlinear elastic part of the normal

stress .
304 7% = 1,(0) 7%, )

where ¥,(0) is the coefficient of the first normal stress, is always compressive. These
compressive normal stresses are such as to turn long bodies into the stream and cause
circular particles to aggregate and chain.

In the case of the Oldroyd-B fluid studied here, we find that a, = —%(A,—A,) and
a, = —2a, in the limit of slow flows, hence the coefficient of the second normal stress
vanishes: 2a, +a, = 0. Equation (7) shows that the entire contribution to 7, comes
from the pressure and none from the extra stress with

Dpy
D¢

Of course, shear thinning does not appear at second-order in the asymptotic analysis
leading to the second-order form of the Oldroyd-B model. We can stimulate some

thoughts about the important role of shear thinning in the motion of particles by a
heuristic argument due to Joseph suggested by writing the last term of (10) as

k(A=A y" (11
The term (11) shows that the normal stresses in the shear-thinning form of the
Oldroyd-B fluid still increase more rapidly than vy so that if the effect of shear thinning
is to decrease the viscosity and increase the shear rate at places of high y on the body,
the overall effect would be to reinforce migration effects due to compressive normal
stresses over and above what they would be without shear thinning. Another way to
say this is that in a pipe flow with a prescribed pressure gradient, the pressure force
balances the shear force at the wall so the shear stress 7, = #(y)y is the same for all
viscosity functions. If the fluid thins in shear, the viscosity # goes down and the shear
rate y up, keeping the product constant. Then 5(y)y* = 7,7 is larger than it would be
if the fluid did not shear thin because vy is larger.

Normal stresses are not the only forces which can cause a particle to migrate in a
shear-thinning fluid: a lateral imbalance of the shear stresses can also cause lateral
migration.

In general the shear rates are large near the places where the velocities are large and
the pressures due to inertia are small. On the other hand, where the stagnation pressures
are high the compressive effects of the elastic normal stresses are small, and the places
to which particles migrate are worked out in this competition. This argument seems to
be consistent with the results of the numerical experiments described below.

T,n=—pP=—py+(A;—2AY) — (A, —Ay) V2. (10)

2. Numerical method

The equations of motion and the constitutive equation are solved at each time step
using an EVSS (elastic-viscous-split-stress) formulation. The main solver was adapted
from that of the popular code poLYFLOW. The solid—fluid coupling is treated by an
arbitrary Lagrangian—Eulerian method with mesh velocities. The numerical method
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FIGURE 1. Lateral migration of a solid cylindrical particle in Couette flow between two walls moving
in opposite directions. W is the width of the channel. Y, is the distance of the cylinder centre from the
wall. We call the final equilibrium value of Y,/ the standoff distance.

has been explained before (Huang & Feng 1995; Feng et al. 1996) and the details will
not be discussed here. Because of the lower-order scheme used, our computations are
limited to low Deborah numbers; above a critical De value, convergence is lost. This
critical De depends on the Reynolds number Re, the degree of shear thinning in the
fluid and the blockage ratio of the channel f: higher De can be reached for smaller Re,
smaller f§ and milder shear thinning. As an example, we have obtained convergent
results up to De =3 at Re =5, £ =0.25 and n = 1 in a Poiseuille flow.

In our simulations we use an unstructured mesh with triangular elements. A typical
mesh used in most of our computations for # = 0.10 has 1520 nodes and 720 elements.
We refined the mesh to study convergence. For instance, at Re = 5 and De = 0.2 in a
Poiseuille flow (see figure 13) refining the mesh to 2560 nodes and 1230 elements results
in a 1.2% difference in the final standoft distance. Thus we think the mesh used is
adequate. For wider channels (4 = 0.025), we use up to 2780 nodes and 1360 elements.

In the following sections, numerical results for the motion of a two-dimensional
circular cylinder in a Couette flow and in a Poiseuille flow will be presented. Both
neutrally buoyant and non-neutrally buoyant particles are considered.

3. Particle migration in a Couette flow

The lateral migration of a circular particle in a two-dimensional Couette shear flow
is studied. In our set-up, the walls are moving in opposite directions with speed +3U,
(figure 1). The motion of a solid particle in the channel is determined by the following
dimensionless parameters: Reynolds number Re = p; U, a/7, Deborah number De =
U,A,/a, blockage ratio of the channel f = a/R and ratio of solid particle to fluid
density p,/p;. Here a is the radius of the particle, R is the half-width of the channel.

3.1. Neutrally buoyant particles

A neutrally buoyant circular cylinder is released at different initial positions in a
channel with # = 0.25, Re = 5 and De = 1.0, as shown in figure 2. The particle reaches
an equilibrium position at the centreline of the channel, regardless of its initial position
and velocity. This is the same as in a Newtonian fluid (Feng et al. 1994b).

The numerical solution of Feng et al. (1994 b) and the perturbation solutions of Ho
& Leal (1974) and Vasseur & Cox (1976) showed that the centreline of a channel is the
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FIGURE 2. Lateral migration of a neutrally buoyant particle released from different initial positions
in Couette flow of an Oldroyd-B fluid (£ = 0.25, Re = 5, De = 1.0). ¥ indicates the initial position of
the particle. V, . is the initial velocity of the particle.
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FIGURE 3. The effect of the Reynolds number on the migration of a neutrally buoyant particle in
Couette flow of an Oldroyd-B fluid (/5 = 0.25, De = 1.0). The centreline of the channel is no longer
a stable equilibrium when the Reynolds number is small.

Lo

stable equilibrium position for a neutrally buoyant particle in a Couette flow of a
Newtonian fluid regardless of the Reynolds number. For a particle sedimenting in an
Oldroyd-B fluid, Feng et al. (1996) found that the particle is pushed further away from
the sidewall as the Reynolds number is increased. To study the effect of Reynolds
number on the motion of a solid particle in a Couette flow of an Oldroyd-B fluid, we
fixed the Deborah number De = 1.0 and changed the Reynolds number Re by
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FIGURE 4. The effect of Deborah number on the migration of a neutrally buoyant particle in
Couette flow of an Oldroyd-B fluid (4 = 0.25, Re = 1.0).
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FIGURE 5. The effect of the blockage ratio f = a/R on the migration of a neutrally buoyant particle
in Couette flow of an Oldroyd-B fluid (De = 1.0, Re = 0). The cylinder will touch the wall when the
centre of the cylinder is at ¥,/W = 0.5 in the channel.

changing both the Couette inflow velocity U, and relaxation time A,. Figure 3 shows
that the particle moves toward the centreline very fast when inertia is strong (Re = 5).
As Re is decreased the centreline of the channel is apparently no longer a global
attractor of trajectories of the neutrally buoyant particle; normal stress effects become
dominant as Re is decreased. If we set Re to zero by removing the inertia term u - Vu
in equation (10), the particle no longer moves to the centreline but stays very close to
the wall (see figure 3). Particle migrations in viscoelastic Couette flows and
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FIGURE 6. Streamlines for the Couette flow around a cylinder under conditions specified in figure 5.
(a) f=0.25 and * = 689: at this ¢* the particle has drifted to its equilibrium position. (b) f = 0.50
and r* = 196.5: the particle is still migrating to the wall, the computation fails for larger ¢*.

sedimentation are such as to have normal stresses generated on the side of the particle
away from the wall, forcing it to the wall, and the migration is opposed by lubrication
forces associated with slow flow in the smaller gap near the wall (see Feng et al. 1996).

In figure 4, we study the effects of De with a fixed Reynolds number Re = 1.0. When
De = 1.0, the particle moves to the centreline of the channel. As the Deborah number
is increased, the particle migrates toward the sidewall. Perhaps there is a critical De for
any Reynolds number such that the centre attracts for De smaller than critical and a
position nearer the wall attracts when De is greater than critical.

The effect of normal stresses is strengthened by the effect of the blockage. To
emphasize this, we suppressed inertia by setting Re = 0. For a wide channel with
f = 0.25 or smaller, the particle goes to the centreline eventually regardless of its initial
position. When the gap is smaller than critical, the centreline of the channel is no longer
a stable equilibrium position as can be seen in figure 5: the particle is pushed toward
the sidewall. For = 0.5, the particle migrates until it almost touches the wall. At this
point our numerical computation fails. Figure 6 gives the contours of streamlines as
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FIGURE 7. The effect of shear thinning on a neutrally buoyant particle in Couette flow of an Oldroyd-
B fluid (# = 0.25, Re = 0, De = 2.8). The cylinder will touch the wall when the centre of the cylinder
is at ¥,/W = 0.125 in the f = 0.25 channel.

seen in a coordinate system fixed on the particle. As shown in figure 6 (a) with f = 0.25,
the particle at the time ¢* has drifted to its equilibrium position which is determined
by a balance of compressive normal stresses on the side near the centreline where the
streamlines are crowded and lubrication forces on the other side. This feature is even
clearer in figure 6(b) with £ = 0.5.

In the sedimentation problem studied by Feng e al. (1996), the final equilibrium
position of the particle is also closer to the sidewall when the channel is narrower but
the particle never approaches the wall so closely that the computation fails even when
Re = 0.

The position of equilibrium is determined by a balance of the normal compressive
stresses where the streamlines are crowded and the lubrication forces which arise in the
gap between the cylinder and the wall. Lubrication forces are associated with the
change from high to low pressures, linear in velocity, when the fluid is forced slowly
through the gap between the cylinder and the wall. For faster flow through the gap,
stagnation pressures proportional to the square of the velocity are induced by inertia,
hence lubrication forces are at work.

The effect of shear thinning is also to drive the particle closer to the wall. This effect
has already been noted by Huang & Feng (1995). In figure 7, we used a Carreau—Bird
viscosity law with A,;/A, = 10; the power index n = 1.0 corresponds to no shear
thinning, and smaller » indicates more shear thinning. The inertia effect was removed
in these computations. Shear thinning enhances the migration of the cylinder to the
wall. The results are consistent with the argument we gave in the first section; shear
thinning promotes the migration towards the wall because of the action of the
compressive normal stresses on the side of the particle away from the wall, as shown
in (11). For n = 0.8 and n = 0.6, the particle approaches the sidewall rapidly and so
closely that our computation fails.
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FIGURE 8. Trajectories of non-neutrally buoyant particles in Couette flow of an Oldroyd-B fluid
(f=0.25Re =5,De = 1.0). (a) Particles with density p, smaller than the fluid p,; (b) particles with
density p, larger than the fluid p,.

3.2. Non-neutrally buoyant particles

Now we focus our attention on the motion of non-neutrally buoyant particles. In the
following simulations, we keep these parameters unchanged: f = 0.25, Re =5 and
De = 1.0, and release particles with different densities. The direction of gravity g is
along the axis x, as shown in figure 1.

Figure 8 shows that the particle reaches a stable position close to either of the walls
when it is only slightly buoyant (p,/p; = 0.998 and p,/p, = 1.002). A light particle is
always at the side of the channel in which the flow is down and a heavy particle is at
the other side. As the density difference increases, the slip velocity of the particle
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FIGURE 9. Equilibrium position of a non-neutrally buoyant particle in Couette flow of an
Oldroyd-B fluid with De = 1.0 and a Newtonian fluid (f = 0.25, Re = 5).

increases, enhancing the effects of inertia which push particles away from the wall. As
in a Newtonian fluid (Feng ef al. 1994 b), this effect is not quite symmetric with respect
to the sign of the density difference because the solid inertia varies (see figure 9).

A slightly buoyant (0.99 < p,/p, < 1.01) particle in an Oldroyd-B fluid moves closer
to the centreline of the channel than in a Newtonian fluid whereas a more buoyant
particle moves closer to the wall. This is similar to the shift of the equilibrium position
in sedimentation studied by Feng ef al. (1996).

4. Particle migration in a Poiseuille flow

Now let us consider the lateral migration of a circular particle in a two-dimensional
Poiseuille flow of an Oldroyd-B fluid (figure 10). The geometry of the channel is the
same as that in a Couette flow. All the dimensionless parameters can be defined as in
Couette flow, except that the velocity U, is replaced by the maximum velocity of the
Poiseuille inflow U,

4.1. Neutrally buoyant particles

The motion of a neutrally buoyant particle in a viscoelastic fluid varies with the
Reynolds number Re, the Deborah number De, the blockage ratio f and the
parameters of shear thinning; to study these effects, we change one of the parameters
while keeping the others fixed.

First a neutrally buoyant circular cylinder is released from different initial positions
in a channel with § = 0.25, Re = 5 and De = 0.2. The behaviour is similar to that in
a Newtonian fluid; all the particles reach the same equilibrium position roughly
halfway between the wall and the centre, as shown in figure 11. The final position of
a particle is independent of the initial conditions.

Figure 12 shows that the effects of inertia, at higher Re, are such as to push the
particle away from the wall after an initial overshoot as in the Couette flow of an
Oldroyd-B fluid (cf. figure 3). In Poiseuille flow of a Newtonian fluid, the effect of
inertia, at higher Re, is such as to push the particle toward the wall (Feng et al. 1994 b).
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FIGURE 10. Lateral migration of a solid particle in a plane Poiseuille flow. U, is the maximum
velocity at the centreline. (X,, Y)) is the centre of the cylinder.
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FIGURE 11. Trajectories of a neutrally buoyant particle released at different initial positions in
Poiseuille flow of an Oldroyd-B fluid (£ = 0.25, Re = 5, De = 0.2). Y, is the initial position of the
particle.

The width of the channel plays a very important role in the migration of the solid
particles. Karnis & Mason (1966) observed the migration of a sphere in a viscoelastic
fluid in a pipeline flow when inertia is negligible. They found that the sphere moves to
the centre of the pipe regardless of its initial position. The perturbation results of Ho
& Leal (1976) showed that normal stresses of a second-order fluid cause the neutrally
buoyant particle to migrate to the centre of the channel. On the other hand, Dhahir &
Walters (1989) measured the lateral force acting on a circular cylinder fixed in a slow
channel flow of a viscoelastic fluid. The force pulls the cylinder towards the nearby
wall. Their results were later verified by the numerical results of Carew & Townsend
(1991) and Feng et al. (1996).

The principal difference between the two groups of results is the blockage ratio.
Dhahir & Walters (1989) and Carew & Townsend (1991) used a very large cylinder in
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FIGURE 12. The effect of the Reynolds number on a neutrally buoyant particle released in
Poiseuille flow of an Oldroyd-B fluid (§ = 0.25, De = 0.2).
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FIGURE 13. The effect of the blockage ratio f = a/R on the motion of a neutrally buoyant particle
in Poiseuille flow of an Oldroyd-B fluid (Re = 5, De = 0.2). The cylinder will touch the wall when the
centre of the cylinder is at Y,/d = 0.5 where d is the diameter of the particle.

their planar Poiseuille flow: § = 7/12. In their perturbation analysis Ho & Leal (1976)
restricted the solid particle to be very small as f = a/R < 1. The effect of the wall is
merely to generate the undistributed flow field and makes no direct contribution to the
lateral migration of the particle. The experiment of Karnis & Mason (1966) also used
very small particles, though their results might have been affected by the density
mismatch as discussed in the next subsection. It appears that the effects of viscoelastic
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FIGURE 14. Streamlines for the Poiseuille flow around a cylinder when Re = 5 and De = 0.2. (a)
£ =0.25: the particle has reached its equilibrium position which is determined by a balance of
compressive normal stresses on the open side near the centreline where the streamlines are crowded
and lubrication forces on the other side. (b) f = 0.50: the particle has drifed to an equilibrium
position very close to the wall. Streamlines on the open side near the centreline are crowded.

stresses are modulated by the wall blockage; a particle experiences an attraction
toward the nearby wall at large f, but feels a lateral force toward the centre of the
Poiseuille flow at small S.

The effects of the blockage ratio g are illustrated in figure 13. As the width of the
channel is decreased (larger ), the particle stabilizes closer to the wall because the
streamlines in a narrower channel crowd in such a way as to intensify the shear rates
in the more open portions of the channel away from the wall (see figures 14 and 145),
intensifying compressive normal stresses there.

To explore the limit of small £, we have done a series of computations with § = 0.025
(figure 15a). The inertia term is put to zero so we can focus our attention on the effects
of the normal stresses induced by the curvature of the inflow velocity. Now the particle
approaches the centre of the channel where the shear rate of the undisturbed flow is
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FIGURE 15. The effect of normal stresses on a neutrally buoyant particle released in Poiseuille
flow of an Oldroyd-B fluid without inertia (Re = 0). (a) f = 0.025. (b) = 0.25.

zero. Without wall effects, the migration of the particle is controlled by the normal
stresses through the curvature of the velocity profile. The larger the Deborah number
De is, the faster the particle goes toward the centre of the channel. The results agree
with the perturbation solution of Ho & Leal (1976). Our simulation is in two
dimensions where the wall effect can be even stronger than in three dimensions.

The effects of Deborah number De at relatively large 4 are shown in figure 15(b). The
inertia is again put to zero (Re = 0). The particle moves all the way to the wall and this
migration is faster when De is larger. Without inertia effects, the strong effects of the
wall blockage overwhelm the effects of the curvature of the velocity profile and increase
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FIGURE 16. The effect of normal stresses on a neutrally buoyant particle released in Poiseuille flow
of an Oldroyd-B fluid (f = 0.25, Re = 5). The cylinder will touch the wall when the centre of the
cylinder is at ¥,/W = 0.125 in this # = 0.25 channel. (@) The particle trajectories; (b) the standoff
distances.

the effects of the compressive normal stresses acting on the particle surface so as to
drive the particle toward the wall. This is consistent with the experimental results of
Dhahir & Walters (1989) and the numerical results of Carew & Townsend (1991).

The effect of inertia on the interplay between f and De is such that the particle never
touches the wall. Figure 16 shows a series of competition. At £ = 0.25, the elastic
stresses push the particle toward the wall. But unlike in figure 15(b), the particle will
stop at a standoff distance from the wall. This standoff distance Y,/ W decreases as De
increases, and is expected to increase with Re.
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FIGURE 17. The effect of shear thinning on the migration of a neutrally buoyant particle in Poiseuille
flow of an Oldroyd-B fluid (# = 0.25, Re = 5, De = 0.2, A,/A, = 100). The cylinder will touch the wall
when the centre of the cylinder is at ¥,/W = 0.125 in the f = 0.25 channel.

From figures 15 and 16 we can draw the conclusion that inertia always pushes the
particle away from the wall. The normal stresses push the particle toward the wall at
strong blockage. At weak blockage, the wall attraction becomes minimal and the
normal stresses generate a lift force, through the curvature of the velocity profile, that
leads the particle to the centre of the channel where the shear rate is zero. The final
equilibrium position of the particle is determined by a competition between inertia and
normal stresses. In the sedimentation problem studied by Feng er al. (1996), the
particles assume a finite standoff distance close to the wall even for Re = 0.

The effect of shear thinning always promotes the particle’s motion toward the wall.
A heuristic argument, associated with (11), was given in §1 whose main thrust is that
compressive normal stresses are intensified by shear thinning because of the increase of
the shear rate at the walls where the resistance to flow is weakened. The shear stress
7,, may not change much at a particle surface, but 7,y will definitely increase there.
This idea is consistent with the numerical results displayed in figure 17 where it is
shown that the final standoff distance of the particle comes closer to the wall as the
power law index 7 is decreased. More shear thinning also gives rise to a large transient
overshoot.

It is necessary to explain why particles in Couette flow are pushed all the way to the
wall in situations where particles in Poiseuille flow do not touch. It is true, as seen in
figure 15(b), that particles in Poiseuille flow will drift all the way to the wall without
the intervention of inertia (Re = 0). For Re > 0, the compressive normal stresses
pushing the particle from the open channel side are balanced by inertia forces in the
gap. Obviously inertia forces and normal stresses act all around the particle and not
only on one or the other side. We can understand the difference between Couette and
Poiseuille flow by noting that the shear rates at the particle are due to the main flow
and a perturbation, and the main flow shear is uniform across the particle in Couette
flow and greater in the gap and weaker in the open part of the channel in Poiseuille flow
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FIGURE 18. Trajectories of non-neutrally buoyant particles in Poiseuille flow of an Oldroyd-B fluid
(#=0.25,Re = 5,De = 0.2) when (a) the density of the particle p, is smaller than the density of the
fluid p, and () the density of the particle p, is larger than the density of the fluid p,.

(compare the streamlines in figure 145 to figure 65). So there is a greater action of
compressive normal stresses on the gap side of the particle in Poiseuille flow and this
helps inertia to keep the particle off the wall.

4.2. Non-neutrally buoyant particles

Particles with densities larger or smaller than the fluid were released midway between
the wall and the centreline of the channel with § = 0.25. The trajectories are shown in
figure 18 for Re = 5, De = 0.2. Here the direction of gravity g is opposite to the inflow,
along the axis x, as shown in figure 10.

If the density difference is large, the particle moves to the centre of the channel no
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matter whether the particle is lighter or heavier than the fluid, but lighter particles with
ps/ps close to 1 (p,/p; = 0.998 in figure 18(a)) move to the wall. In many cases there
is a transient in which the particle first drifts away from its equilibrium position in
narrow channels (figure 18) and wider ones (figure 19). The effects of density differences
are greater in wider channels. Particles only slightly light than the fluid (p,/p; = 0.998)
move closer to the wall than neutrally buoyant particles. The equilibrium positions of
heavier particles are closer to the centreline.

Figure 20 shows how the equilibrium positions of particles vary with density. Heavy
particles drift closer to the centre in a wider channel while light particles drift further
from the centre in a wider channel. It is interesting to note the difference between the
migration of the particle in an Oldroyd-B fluid and that in a Newtonian fluid. A
particle with slight density difference (between p,/p, = 0.998 and p,/p, = 1.001) moves
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FIGURE 20. The stable position of a non-neutrally buoyant particle in Poiseuille flow of an
Oldroyd-B fluid. Re = 5. A Newtonian curve for # = 0.25 is also shown for comparison.

a bit closer to the wall in a viscoelastic fluid but a particle with larger density difference
stabilizes closer to the centre of the channel. This trend is opposite to that in a Couette
flow (figure 9).

Karnis & Mason (1966) matched the density of the fluid and particles in their
experiments on Couette flow but they did not report procedures for density matching
in their experiments on Poiseuille flow even though the experiments were for different
concentrations of polymer using the same particles. They observed that particles move
toward the centre of the channel in Poiseuille flow but did not say that these particles
were neutrally buoyant. It seems to us that the particles used in their experiments on
Poiseuille flow could not all be neutrally buoyant, though the mismatch of density
might be small. Our results in figure 20 shows that the particle will approach the centre
of the channel if the density of the particle p, is 0.5% larger or 1% smaller than the
density of the carrying fluid p;.

5. The effects of shear thinning in sedimentation

In this section we present some results on the effects of shear thinning in the
sedimentation of the particles in an Oldroyd-B fluid which was not given in the
previous study of Feng et al. (1996). All the dimensionless parameters are defined in the
same way as in Couette and Poiseuille flows except that the characteristic velocity is
replaced by the particle velocity U,

Shear thinning leads to a larger sedimentation velocity of the particle. This means
larger inertial effects on one hand, which drive the particle away from the wall, and
larger effects of the compressive normal stresses on the other hand, which push it
toward the wall. These features are clearly seen in figure 21 where the particle is
released in a = 0.25 channel. The dashed curves show that the effects of inertia are
greater than the effects of normal stresses due to the increasing velocity induced by the
shear thinning so the particle moves to an equilibrium position closer to the centre. To
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FIGURE 21. The effects of shear thinning on the sedimentation of particle in an
Oldroyd-B fluid. g = 0.25.

emphasize the effects of the normal stresses, we remove the inertial term so that Re = 0.
The solid curves show that the compressive normal stresses push the particle closer
to the wall as a result of shear thinning.

6. Conclusions

In this paper we have studied the unsteady motion of both neutrally buoyant and
non-neutrally buoyant particles in a Couette flow and in a Poiseuille flow. Using direct
numerical simulation, we can follow the particle’s motion and verify our concepts of
the mechanisms which move the solid particles in the viscoelastic fluids.

For a neutrally buoyant particle in a viscoelastic fluid, the equilibrium position
varies as a result of inertia, elasticity, the blockage ratio and shear thinning.

(a) Effects of inertia. Lower Reynolds number leads to stronger attraction to the
wall on a particle in a viscoelastic fluid so the particle migrates closer to the wall in both
a Couette flow and a Poiseuille flow. This is similar to the attraction toward the wall
on a particle sedimenting in a viscoelastic fluid but is different from the migration in
a Newtonian fluid. In a Newtonian fluid, a particle will move to the centreline of the
channel in a Couette flow regardless of Reynolds number and move closer to the
centreline in a Poiseuille flow as Reynolds number is decreased.

(b) Effects of the blockage ratio. A particle moves closer to the wall as the width of
the channel becomes smaller, as in the sedimentation of a particle. The streamlines in
a narrower channel crowd in such a way as to intensify the shear rates in the more open
portions of the channel away from the wall so as to intensify the compressive normal
stresses.

(¢) Effects of shear thinning. Shear thinning strengthens the attraction to the wall on
the particle in both Couette and Poiseuille flows. In a Couette flow, a particle migrates
and finally touches the nearby wall in the absence of inertia. This is because the
compressive normal stresses at places of high shear rate on the body increase as a result



The motion of solid particles in Couette and Poiseuille flows 93

of shear thinning. In sedimentation, the settling velocity of the particle increases
because of shear thinning, increasing both the effect of the inertia which drives the
particle away from the wall and the effect of the compressive normal stresses which
pushes it toward the wall.

(d) Effects of elasticity. Elasticity gives rise to the compressive normal stresses on the
particle and attracts it to the wall in Couette flow and in sedimentation. If the blockage
ratio is large enough (/ = 0.25), the effect of the curvature of the inflow velocity profile
is overwhelmed by the effect of the blockage ratio, and the particle in Poiseuille flow
moves toward the sidewall until it touches the wall if the fluid inertia is put to zero. The
compressive normal stresses on the surface of the particle where the streamlines are
crowded cause the particle to move closer to a sidewall. This is different from
sedimentation where a particle goes closer to the wall with larger elasticity but never
touches the wall since the elasticity generates a repulsion from the wall in the region
next to the wall. If the blockage ratio is very small (4 = 0.025), the particle in Poiseuille
flow moves to the centre of the channel where the shear rate of the undisturbed flow
is zero. In this case, the migration of the particle is controlled by the normal stresses
induced by the curvature of the inflow velocity profile. Larger Deborah number De will
drive the particle toward the centre of the channel faster.

In general, a particle’s motion is controlled by the competition between the effects
of inertia and the effects of the compressive normal stresses. The effects of the normal
stresses come from the local shear rate on the particle surface induced by the motion
of the particle when the effect of the blockage ratio is strong and by the curvature of
the inflow velocity profile when the effect of the blockage ratio is weak.

For the Deborah numbers tested, all non-neutrally buoyant particles migrate toward
the centreline of the channel when they are 1% lighter or 0.5 % heavier than the fluid,
as in a Newtonian fluid.

(e) A slightly buoyant particle in a Couette flow migrates closer to the centreline of
the channel in a viscoelastic fluid than it does in a Newtonian fluid. A more buoyant
particle in a Couette flow moves closer to the sidewalls than it does in a Newtonian
fluid.

(f) In a Poiseuille flow, a slightly buoyant particle moves closer to the sidewall and
a very buoyant particle moves closer to the centreline of the channel in a viscoelastic
fluid than it does in a Newtonian fluid.
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